Name: \qquad
Instructor:
Math 10550, Practice Exam III
November 15, 2023

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

| Please do NOT write in this box. |
| ---: | :--- |
| Multiple Choice__ |
| 11. |
| 12. |
| 13. |
| Total |

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) The slant asymptote of $y=\frac{2 x^{4}+x^{3}+5}{x^{3}-3 x^{2}+2}$ is given by
(a) $y=2 x-5$
(b) $y=2 x+4$
(c) $y=2 x+7$
(d) $y=x+4$
(e) There are no slant asymptotes.

Solution: Using long division, we find that

$$
\frac{2 x^{4}+x^{3}+5}{x^{3}-3 x^{2}+2}=(2 x+7)+\frac{21 x^{2}-4 x-9}{x^{3}-3 x^{2}+2}
$$

2. (6 pts.) Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{6}+5}}{x^{3}+1}$.

Solution: We first divide through by x^{3}, in the numerator using the fact that $\sqrt{x^{6}}=-x^{3}$ for $x<0$:

$$
\frac{\sqrt{4 x^{6}+5}}{x^{3}+1}=-\frac{\sqrt{4+5 /\left(x^{6}\right)}}{1+1 /\left(x^{3}\right)}
$$

As x goes to $-\infty$, the numerator goes to $\sqrt{4}=2$. As x goes to $-\infty$, the denominator goes to 1 . Hence the answer is -2 .
(a) $3 / 2$
(b) 6
(c) 2
(d) -2
(e) 4

Name: \qquad
Instructor: \qquad
3. (6 pts.) If we want to use Newton's method to find an approximate solution to

$$
\cos (x)-x=0
$$

with initial approximation $x_{1}=\frac{\pi}{2}$, what is x_{2} ?
(a) π
(b) $\frac{\pi}{4}$
(c) 0
(d) $\frac{3 \pi}{4}$
(e) $\frac{\pi}{2}$

Solution: Take $f(x)=\cos (x)-x$. Using that $f^{\prime}(x)=-\sin (x)-1$ and the formula $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$, we have

$$
\begin{aligned}
x_{2} & =\frac{\pi}{2}-\frac{-\pi / 2}{-2} \\
& =\pi / 2-\pi / 4 \\
& =\pi / 4
\end{aligned}
$$

4. (6 pts.$)$ A bug being chased by a kitten (both moving in a straight line) enters a kitchen with velocity $1 \mathrm{ft} / \mathrm{sec}$, and accelerates at $\frac{2}{\sqrt{t}} \mathrm{ft} / \mathrm{sec}^{2}$. How fast is the bug moving 9 seconds later.
(a) $5 \mathrm{ft} / \mathrm{sec}$
(b) $37 \mathrm{ft} / \mathrm{sec}$
(c) $13 \mathrm{ft} / \mathrm{sec}$
(d) $4 \mathrm{ft} / \mathrm{sec}$
(e) $7 \mathrm{ft} / \mathrm{sec}$

Solution: Since acceleration is given by $a(t)=2 t^{-1 / 2}$ and the derivative of velocity is acceleration, we know that after integrating acceleration, the velocity is given by $v(t)=$ $4 t^{1 / 2}+C$ for some constant C. We are also given that the initial velocity is 1 so that $v(0)=C=1$. Thus, $v(t)=4^{1 / 2}+1$. Thus, $v(9)=12+1=13$.

Name: \qquad
Instructor: \qquad
5. (6 pts.) The graph shown below is that of $f(x)$ for $-1 \leq x \leq 4$ where

$$
f(x)= \begin{cases}2 & \text { if }-1 \leq x \leq 0 \\ \sqrt{4-x^{2}} & \text { if0 }<x \leq 2 \\ 4-2 x & \text { if2 } \leq x \leq 4\end{cases}
$$

Which of the following equals $\int_{-1}^{4} f(x) d x$?

(a) π
(b) $2 \pi-2$
(c) $6+\pi$
(d) 0
(e) $\pi-2$

Solution: From -1 to 0 , the function is constant with output 2 . So the area under the curve is given by the area of a rectangle with base 1 and height 2 . The area of such a rectangle is 2 . From 0 to 2 , we see that the function traces out the upper left portion of a circle with radius 2 centered at $(0,0)$ and hence, we have that the area is given by $\frac{1}{4} \pi 2^{2}=\pi$. From 2 to 4 , we see that the curve traces the hypotenuse of a right triangle with base 2 and height 4. The area of such a triangle is $\frac{1}{2}(2)(4)=4$. However, since function is under the x-axis from 2 to 4 , we need to account for this by subtracting the area of the triangle. So the integral is evaluated to be $2+\pi-4=\pi-2$.

Name: \qquad
Instructor: \qquad
6. (6 pts.) If $f(x)=\int_{x^{3}}^{1} \sqrt{1+\sin (t)} d t$, then $f^{\prime}(x)=$
(a) $-3 x^{2} \sqrt{1+\sin \left(x^{3}\right)}$
(b) $\sqrt{1+\sin (x)}$
(c) $-\sqrt{1+\sin \left(x^{3}\right)}$
(d) $\sqrt{1+\sin \left(x^{3}\right)}$
(e) $3 x^{2} \sqrt{1+\sin \left(x^{3}\right)}$

Solution: Setting $y=x^{3}$, we rewrite as $f\left(y^{1 / 3}\right)=\int_{y}^{1} \sqrt{1+\sin (t)} d t$. Then we have

$$
-f\left(y^{1 / 3}\right)=\int_{1}^{y} \sqrt{1+\sin (t)} d t
$$

Taking the derivative of both sides, we see via the chain rule and the Fund. Thm. of Calc. that

$$
\begin{aligned}
-f^{\prime}\left(y^{1 / 3}\right) * 1 / 3 y^{-2 / 3} & =\sqrt{1+\sin (y)} \\
\Rightarrow f^{\prime}\left(y^{1 / 3}\right) & =-3 y^{2 / 3} \sqrt{1+\sin (y)} \\
\Rightarrow f^{\prime}(x) & =-3 x^{2} \sqrt{1+\sin \left(x^{3}\right)}
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
7. (6 pts.) Evaluate $\int_{0}^{4}|x-2| d x$.
(a) 0
(b) 2
(c) 6
(d) -2
(e) 4

Solution: We see that $x-2$ is positive when $x>2$ and $x-2$ is negative when $x<2$.
We compute

$$
\int_{0}^{4}|x-2| d x=\int_{0}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x=\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}=(4-2)+(8-8)-(2-4)=4 .
$$

8. (6 pts.) Evaluate

$$
\int \frac{\sin \left(x^{2 / 3}\right)}{\sqrt[3]{x}} d x
$$

(a) $-\cos \left(x^{2 / 3}\right)+C$
(b) $\quad \frac{3}{2} \cos \left(x^{2 / 3}\right)+C$
(c) $-\frac{2}{3} \cos \left(x^{2 / 3}\right)+C$
(d) $-\frac{3}{2} \cos \left(x^{2 / 3}\right)+C$
(e) $\quad \cos \left(x^{2 / 3}\right)+C$

Solution: Setting $u=x^{2 / 3}$, we have $d u=\frac{2}{3} x^{-1 / 3}$ and

$$
\begin{aligned}
\int \sin (u) d u & =\frac{2}{3} \int \frac{\sin \left(x^{2 / 3}\right)}{\sqrt[3]{x}} d x \\
\Rightarrow-\cos (u)+C & =\frac{2}{3} \int \frac{\sin \left(x^{2 / 3}\right)}{\sqrt[3]{x}} d x \\
\Rightarrow \int \frac{\sin \left(x^{2 / 3}\right)}{\sqrt[3]{x}} d x & =-\frac{3}{2} \cos \left(x^{2 / 3}\right)+C .
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
9. (6 pts.) Evaluate

$$
\int_{1}^{2} \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x
$$

(a) $\frac{\tan (2)}{2}-\frac{\tan (1)}{2}$
(b) $2 \tan (\sqrt{2})-2 \tan (1)$
(c) $\frac{\tan (\sqrt{2})}{2}-\frac{\tan (1)}{2}$
(d) $\tan (\sqrt{2})-\tan (1)$
(e) $2 \tan (2)-2 \tan (1)$

Solution: First we look for an antiderivative. We try the function $F(x)=\tan \left(x^{1 / 2}\right)$. We see that $F^{\prime}(x)=\frac{\sec ^{2}\left(x^{1 / 2}\right)}{2 x^{1 / 2}}$. Thus, our initial guess is incorrect, but we see that $F(x)=2 \tan \left(x^{1 / 2}\right)$ is an antiderivative for the integrand. Applying the FTC, we see that the answer is $F(2)-F(1)=2 \tan \left(2^{1 / 2}\right)-2 \tan (1)$.

Name: \qquad
Instructor: \qquad
10. (6 pts.) The graph of $f(x)$ is shown below:

which of the following gives the graph of an antiderivative for the function $f(x)$?
Solution Denote $F(x)$ to be one antiderivative of $f(x)$. By definition, $F^{\prime}(x)=f(x)$. So $F(x)$ is increasing in $[-4,-2]$ and $[3,4]$; decreasing in $[-2,1) \cup(1,3]$.
(a)

(b)

(c)

(d)

(e)

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11. (13 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.

Let x denote the total width and y denote the total height. So the width of the printed area is $x-2$ and the height of the printed area is $y-3$. Then the total area of the page can be expressed as

$$
A_{t o t a l}=x y
$$

We are given that $A_{\text {total }}=150$, so $y=150 / x$. We wish to maximize

$$
A_{\text {print }}=(x-2)(y-3)=(x-2)\left(\frac{150}{x}-3\right)=156-3 x-\frac{300}{x}
$$

Differentiating with respect to x and finding critical points gives

$$
A_{p r i n t}^{\prime}(x)=-3+\frac{300}{x^{2}}=0
$$

so we must have $300-3 x^{2}=0$, i.e. $x^{2}=100$. So $x=10$ inches.
Using the first derivative test shows that 10 is indeed a maximum. For $x<10, A_{p r i n t}^{\prime}>0$, and for $x>10, A_{p r i n t}^{\prime}<0$.
$y=150 / x$, so we have $y=\frac{150}{10}=15$. Therefore the page which maximizes the printed area has the dimensions 10 inches by 15 inches.

Name: \qquad
Instructor: \qquad
12. (13 pts.) A particle is moving in a straight line with acceleration

$$
a(t)=4\left(t^{2}-\frac{1}{3}\right) \mathrm{ft} / \mathrm{s}^{2}
$$

where distance is measured in feet and time in seconds. The initial velocity of the particle is $v(0)=0 \mathrm{ft} / \mathrm{s}$ and the initial position of the particle is $s(0)=0$.
(a) Find the velocity of the particle at time t (i.e. find $v(t)$).

Solution: $v(t)=\int a(t) d t=\frac{4}{3} t^{3}-\frac{4}{3} t+C$. Moreover, since $v(0)=0$, solving for C we get $C=0$.
(b) Find the position of the particle at time t (i.e. find $s(t)$).

Solution: $s(t)=\int s(t) d t=\frac{1}{3} t^{4}-\frac{2}{3} t^{2}+C$. Moreover, since $s(0)=0$, solving for C we get $C=0$.
(c) Find the values of t for which $v(t)=0$ on the interval $[0, \infty)$.

Solution: $v(t) \frac{4}{3} t\left(t^{2}-1\right)=0$ implies $t= \pm 1$ or $t=0$. Hence, $t=0$ and $t=1$ are the only values for t in $[0, \infty)$ where $v(t)=0$.
(d) Find the distance travelled by the particle on the time interval $0 \leq t \leq 2$.

Solution: Observe that $v(t)<0$ for $0 \leq t \leq 1$ and $v(t)>0$ for $1 \leq v(t) \leq 2$. Total distance traveled is then:

$$
\begin{aligned}
\int_{0}^{2}|v(t)| d t & =\int_{0}^{1}-v(t) d t+\int_{1}^{2} v(t) d t \\
& =\left[-\frac{1}{3} t^{4}+\frac{2}{3} t^{2}\right]_{0}^{1}+\left[\frac{1}{3} t^{4}-\frac{2}{3} t^{2}\right]_{1}^{2} \\
& =-\frac{1}{3}+\frac{2}{3}+\frac{16}{3}-\frac{8}{3}-\frac{1}{3}+\frac{2}{3}=\frac{10}{3}
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
13.(14 pts.) Evaluate the definite integral shown below using right endpoint approximations and the limit definition of the definite integral

$$
\int_{0}^{2} \frac{x}{2} d x
$$

$\left(\right.$ Note: $1+2+3+\cdots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.) Verify your answer using the fundamental theorem of calculus. Solution: We compute $\Delta x=2-0 / n=2 / n$ and $x_{i}=i \Delta x=2 i / n$. Then

$$
\begin{aligned}
\int_{0}^{2} \frac{x}{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{2 i}{2 n}\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n^{2}} \sum_{i=0}^{n} i=\lim _{n \rightarrow \infty} \frac{2}{n^{2}}\left(\frac{n(n+1)}{2}\right)=\lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}}=1
\end{aligned}
$$

Using the FTC we get

$$
\int_{0}^{2} \frac{x}{2} d x=\left.\frac{x^{2}}{4}\right|_{0} ^{2}=\frac{4}{4}-\frac{0}{4}=1
$$

Name: \qquad
Instructor: ANSWERS

Math 10550, Practice Exam III

November 15, 2023

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	($)$	(d)	(e)
2. (a)	(b)	(c)	($)$	(e)
3. (a)	(${ }^{\text {) }}$	(c)	(d)	(e)
4. (a)	(b)	($)$	(d)	(e)
5. (a)	(b)	(c)	(d)	(${ }^{\text {) }}$
6. ()	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	($)^{\text {(}}$
8. (a)	(b)	(c)	($)$	(e)
9. (a)	($)$	(c)	(d)	(e)
10. ($)^{\text {(}}$	(b)	(c)	(d)	(e)

Please do NOT write in this box.
Multiple Choice___
11.
12.
13.
Total

